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SUMMARY 

Swirling flows are often employed in gas turbine combustion systems and high intensity industrial furnaces. 
A detailed analysis of the turbulence in the flow is necessary to  achieve optimum combustion conditions. 
In this paper a method has been described to  measure the turbulence levels in three directions using a hot 
wire anemometer. So far there is no established method available for measurement of turbulence in 
swirling and recirculating flows. 

The present method, it is hoped, will bridge the gap. The merit of the present method is the use of a 
single-wire probe rather than the X-probe. The method has been used for the measurement of turbulence 
levels in swirling recirculating flows generated by vane swirlers. From the measured turbulence levels, 
the kinetic energy of turbulence has been calculated and the results are compared with a well-established 
numerical prediction method. 

Mean velocity measurements have also been made using a 3-hole Pitot probe. The agreement between 
the measured and predicted values is quite satisfactory. 

INTRODUCTION 

Because of their high frequency response hot wire anemometers are preferred for the measurement 
of velocities and turbulence intensities. The basic problem in hot wire anemometry is to relate 
the measured hot wire voltages to the velocity components. Conventional methods, such as 
those discussed by Hinze' and Champagne and Sleicher,2 use the time-averaged form of the hot 
wire response equation. As it is not possible to solve for the velocity components directly by 
time-averaging the square-root expansion, the expression within the square-root is first expanded 
into a series and the expressions for the velocity components are derived neglecting the third- and 
higher-order correlations. In highly turbulent flows, these higher-order correlations are often not 
negligible and the series expansion may lead to considerable errors. Use of a 3-sensor probe with 
digital data analysis will enable the determination of the instantaneous velocity components without 
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approximation. But the method is very expensive, and three sensors placed very close to one 
another are likely to interfere with each other. 

In the present work, a general three-dimensional flow is considered, and exact formulae for 
the quantities U’+U2,  V 2 + U 2 ,  W’+Wz, UV+UU, VW+UW and WU+WU are 
derived. After determining the mean velocities U ,  V and W with the help of a three-hole Pitot 
probe, the turbulence quantities U’, U’, W’, UV, UW and WU are determined. 

THE PRINCIPLE OF THE METHOD 

Consider an inclined wire of angle p lying in the plane OX’Y‘O‘ which makes an angle a with 
the plane X O Y ,  as shown in Figure 1. It can be shown that the effective cooling velocity Ueff 
for the wire in this position is given by 

U2ff = [ ( U  + u)cos a sin b + (W + w)sin a sin b - (I/ + u)cos p]’ 
+u’[(U+u)sina-(W+ w)cosa]’ 
+ b2[( U + u)cos a cos b + (W + w)sin a cos /3 + (V  + u)sin PI2, (1) 

where a and b are the directional sensitivity coefficients of the wire. Usually p=45”, and 
simplifying with this value of b we obtain 

U2ff = (U + u)’ [ (1 + b2)(cos2 a)/2 + a’ sin’ a] + ( V  + u)’( 1 + b2)/2 
+(W+w)’[(l +b2)sin’cr/2+u’cos2a] +(U+u)(V+u)(b*-  1)cosa 
+ (V + u)(W + w)(b2 - 1)sin a + (U  + u)(W + w)(l - 2a’ + b2)sin a cos a. (2) 

For a linearized anemometer system, we have, 

E L  = S u e , , ,  
where S is the sensitivity factor to be determined from the calibration of the wire. Squaring: 

As 
EE = S’ U g .  

EL = EL + e, and Ez + e’ = S2t72ff, (3) 
time averaging equation (2) and substituting in (3), we obtain 

(l/S’)(E: + 2’) = (U’ + U’)[(l + b2)cosZ 4 2  + a’ sin’ a] + (V’ + V’)(1 + b2)/2 
+(W’+W’)[(l +b2)sin2a/2+a2cosa] +(UV+U6)(b2- 1)cosa 
+(VW+UW)(b’- l)sina+(UW+ziw)(l  --a’+ b’)sinacosa. (4) 

Y 

w + w  Y ‘  

u u  x 0 * 
Figure 1. Orientation of the hot wire 
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If an X-probe is used, for one wire b = 45” and for the other wire 
Manfred Bartenwerfer3 has derived exact formulae for U V + UV, V W + VW and U W + UW 

from the three usual X-wire orientations and U’ +U’, V’ +V’, and W’ +W’ from three 
suitable orientations which are not symmetrical to each other. This requires the measurements 
to be made along two different axes. In the present work, measurements are taken with a 45“ 
inclined wire at angles ct = 0, 45, 90, 180 and 270 degrees with respect to the axis OY. The 
response equations of the 45” wire can be obtained by substituting the values of a in equation (4). 
To make the system of equations solvable one more measurement is taken with a straight wire 
in the plane X O Y  with the wire parallel to the axis O X .  The response equation of the straight 
wire in this position is 

U:ff = bi(U + u)’ + ( V  + u)’ + a;(W + w)’, 

= 135”. 

where a, and b, are the directional sensitivity coefficients of the straight wire. 
Time averaging, we obtain 

The five response equations of the 45” wire and the response equation of the straight wire are 
solved to determine the quantities U 2  + U’, V’ + V’, W 2  + W’, U V  + UV, V W  + VW and 
U W + UW. As the mean velocity components U ,  V and W are determined separately using a 
three-hole Pitot probe, the turbulence quantities U’, V 2 ,  W2, UV, VW and UW are readily 
determined. The percentage turbulences in the axial, radial and tangential directions are then 
calculated as follows: 

T, = percentage intensity in the axial direction = J(U’)/Uref x 100, 
T, = percentage intensity in the radial direction = J(V2)/Uref x 100, 
T,,, = percentage intensity in the tangential direction = J(W2)/Uref x 100, 

where Uref is the inlet velocity. 
Once U 2 ,  V’, W’ are estimated, kinetic energy of turbulence can be calculated as 

K.E. = ( 1/3)(U2 + V 2  + W’) 
The advantages of the method are 

(i) The formulae used in the method are exact, as no approximations have been made. 
(ii) The method can be used even for flows with high turbulence intensity. 

(iii) The method does not require orienting the probe along the streamline at the point of 
measurement. 

A limitation of the method is that the mean velocities have to be determined by some suitable 
method. The inaccuracy, if any, in the measurement of the mean velocities will be carried over 
to the turbulence intensities also. This problem can be overcome to a great extent by using 
well-calibrated three-dimensional Pitot probes and precision micromanometers for the 
measurement of mean velocities, as is done in this investigation. 

EXPERIMENTAL SET-UP 

The experiments were conducted in the wind tunnel set-up shown in Figure 2. The blower in 
the wind tunnel was driven by a 12 kW constant speed motor running at 2900r.p.m. The inlet 
velocity to the system was adjusted using the throttle control at the exit of the blower. The 
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Figure 2 Test set-up 1 blower; 2 control throttle; 3 bypass control; 4 filter box; 5 filter elements; 6 nozzle, 
7 test geometry 

676 mm 

Figure 3(a). Geometry 1 

I 1 
I 
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Figure 3(b). Geometry 2 

geometries of the systems used for the experiments are shown in Figures 3(a) and 3(b). A' ir enters 
the test section through a vane swirler, the details of which are shown in Figure 4. The inlet 
velocity of air was maintained at 25 m/s. The experiments were conducted at atmospheric pressure 
and the temperature variations were within 2°C. 

The mean velocity measurements were made using a three-hole Pitot p r ~ b e . ~  The turbulence 
quantities were measured using a constant temperature hot wire anemometer by employing 
the method described above. 
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100 m m  

Figure 4. Vane swirler 

THEORETICAL STUDY 

The predictions were made using a finite difference scheme5 adapted for recirculating flows. The 
equations solved for isothermal flows are the continuity equation, U ,  V and W momentum 
equations, the equation for turbulence kinetic energy, k,  and the dissipation rate ( E )  equation. 
The equations are elliptic in nature and can be presented in the general form:6 

a 
at 
- (y4) + div (yV4 - r grad 4) = S 

where 4 is the dependent variable, y is identically equal to either the mixture density p or zero, 
r is the appropriate exchange coefficient for the variable and S is the source term, which 
includes both the sources of 4 and any other terms which cannot find a place on the left- 
hand side of the equation or which are required to cancel the effects of some of the terms on 
the left-hand side. 

The differential equations are first reduced to finite difference forms in the manner described 
in detail by Spalding,’ and are then solved by the SIMPLE (Semi-Zmplicit Method for 
Pressure-Linked Equations) procedure described by Caretto et aL8 and Pun.’ The main features 
of the solution procedure are summarized here. The procedure is a semi-implicit iterative one 
which starts from given initial values of all the variables and converges to the correct solution 
as the number of iterations increases. For each iteration, the sequence is as follows: 

(a) The U and V momentum equations are solved first with guessed pressures. 
(b) Since these velocities do not satisfy the continuity equation locally, a ‘Poisson-type’ 

correction equation is derived from the continuity equation and from the linearized 
momentum equations. The ‘Poisson’ equation is then solved to obtain corrections to the 
pressure field. The two velocities are then corrected accordingly. 

(c) The W momentum equation is then solved. 
(d) The kinetic energy k and dissipation rate E equations are solved for the new values of the 

velocities. 

DETAILS O F  THE CALCULATIONS 
Grid 

Initially 10 x 10 and 20 x 10 grids were tried. Finally the chosen grid had 25 x 12 nodes in 
the x, r directions, respectively, and the inter-node spacings were non-uniform. A still finer grid 
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may produce more accurate results. However, it will require large computer storage and time 
in solving the equations. Further, with a 25 x 12 grid the predicted results were in satisfactory 
agreement with the measured values. 

Convergence 

The number of iterations required to provide an acceptably convergent solution was 300. The 
criteria for convergence include that the magnitude of the residuals in the finite difference 
equations be less than 1 per cent. 

RESULTS AND DISCUSSION 

Figures 5 and 6 show the predicted and measured axial velocity distributions at various axial 
locations for geometries 1 and 2, respectively. The dotted lines indicate the recirculation zone 
experimentally determined from the locations where flow reversal occurs. From these Figures, 
it can be seen that close to the swirler the agreement between predicted and measured values 

0 10 2 0 m / s e c  - Prediction o Experiment 

_ - -  R C  Zone u 

0 0.24 0.72 1.68 2 . 6 4  
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Figure 5. Axial velocity distribution in geometry 1 
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Figure 6. Axial velocity distribution in geometry 2 
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Figure 7. Tangential velocity distribution in geometry 1 
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Figure 8. Tangential velocity distribution in geometry 2 
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Figure 9. Radial velocity distribution in geometry 1 
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Figure 10. Radial velocity distribution in geometry 2 

Figure 12. Radial distribution of Tu = ,/(Uz)/U,,, in geometry 2 
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Figure 13. Radial distribution of T,, = J(V2)/U,,, in geometry I 
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Figure 14. Radial distribution of T,, = ,/(Vz)/U,,, in geometry 2 
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Figure 15. Radial distribution of T, = ./(S*)/U,,, in geometry 1 
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Figure 16. Radial distribution of T, = J(W’)/U,,, in geometry 2 
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Figure 18. Radial distribution of kinetic energy of turbulence in geometry 2 
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is not that good compared to the agreement away from the swirler. This may be due to the 
lack of accurate knowledge of the exact inlet conditions of velocities, swirl intensity, etc. 

Figures 7 and 8 show the tangential velocity profiles for geometries 1 and 2, respectively. The 
tangential velocity close to the axis increases with increase in radius. This indicates the presence 
of a forced vortex type of motion. With further increase in radius, the profile becomes flat and 
the tangential velocity starts decreasing towards the wall. The magnitude of the tangential 
velocity decreases with increase in X / D .  The agreement between the predicted and measured 
values is in general good. 

Figures 9 and 10 show the radial velocity profiles for geometries 1 and 2, respectively. The 
magnitude of the radial velocity is quite small compared to the magnitudes of the axial and 
tangential velocities. Because of the very small magnitude, accurate measurement is difficult 
using the Pitot probe, and hence the scatter is more. The magnitude of radial velocity decreases 
with increase in X / D .  Close to the swirler ( X / D  < 0.5), the radial velocity changes sign from 
negative to positive in the radial direction. At locations away from the swirler ( X / D  > 0.5) the 
radial velocity is negative at all radii. The negative value indicates that the radial velocity is 
towards the axis. 

As the magnitude of the radial velocity is small, as already explained, the scatter is more and 
the agreement between the predicted and measured values is not good, especially close to the 
swirler. However, the agreement improves with increase in X / D .  

Figures 11 and 12 show the measured turbulence intensities (T,) in the axial direction for 
geometries 1 and 2, respectively. The turbulence intensity is maximum close to the axis and 
starts decreasing as radius increases. The turbulence intensity decreases with increase in X / D .  
This is due to the rapid expansion of the jet and decay in velocity and turbulence. 

Figures 13 and 14 show the measured turbulence intensities (7’”) in the radial direction for 
the two geometries. The turbulence intensity in the radial direction is smaller in magnitude 
compared to the turbulence intensity in the axial direction. 

Figures 15 and 16 show the measured turbulence intensities (T,) in the tangential direction 
for geometries 1 and 2, respectively. The maximum value of T, occurs close to the boundary of 
the recirculation zone for both the geometries. At any other radius, the value of T, decreases 
with increase in X / D ,  indicating the decay of turbulence. 

Figures 17 and 18 shows the predicted and measured profiles of kinetic energy of turbulence 
for the two geometries considered. It can be seen that the kinetic energy of turbulence is quite 
high close to the swirler. At any axial location, the kinetic energy of turbulence is maximum 
close to the axis and decreases as the radius increases. The profiles exhibit a rapid decay of 
turbulence with the increase of X / D .  Agreement between predicted and measured values is not 
good close to the swirler but improves with increase in X / D .  

CONCLUSION 

The method illustrated in the present work gives reasonable results in the measurement of 
turbulent intensities in three-dimensional flows. However, the mean velocities should be 
determined with sufficient accuracy by other suitable means. This may be considered as a 
drawback. The predicted results are, in general, in satisfactory agreement with the measured 
values. 
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